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Chapter 1 

Chapter 1 Supplementary methods 
 

FINDER is a gene annotator that uses RNA-Seq expression data to construct accurate gene 
structures with precise gene boundaries. In this chapter we have compiled the list of genomes 
and the reference gene annotations we used for the chosen species. 

1.1 Preparing data for testing 

1.1.1 Genome and reference gene annotations  
 
We executed FINDER on 8 organisms. The genomes were downloaded from Ensemble. A 
mixture of small, medium and large genomes was used for testing.  

1.1.2 Expression data 
 
FINDER was executed with RNA-Seq expression data downloaded from NCBI-SRA. Both single- 
and paired- ended read samples were used for the purposes of gene annotation. Read lengths 
varied from 75 bp to 600 bp. Samples sequenced only on illumine platform were used. Samples 
prepared by different techniques like oligo-DT, random priming, poly-T amplification, etc. were 
selected. For each organism, a variety of tissue type and conditions were chosen to approach an 
exhaustive transcriptome assembly. All details are provided in the Supplementary file 
@SRAData. 

1.2 Repeat masking 
 
FINDER requires genomes to be soft masked since it is a requirement for BRAKER2 (Bruna et 
al. 2020; Hoff et al. 2016) to generate predicted gene models. FINDER’s alignment and assembly 
modules do not require genomes to be soft masked. For testing, we used soft-masked genome 
sequences downloaded from Ensemble (Error! Reference source not found.) 

1.3 Alignments 
 
FINDER is configured to run both STAR (Dobin et al. 2016, 2013) and OLego (Wu et al. 2013). 
STAR can align a very large number of reads in a short time and is highly configurable. FINDER 
runs multiple rounds of STAR with different settings to ensure optimal alignment. In the first pass, 
STAR only maps reads with a minimum overhang of 12 nucleotides, not allowing any soft clipping 
or mismatches. A filtering step selects splice junctions adequately supported by short reads and 
detected across multiple samples. Splice junctions are removed if the junction is present in less 
than four samples and is supported by fewer than three unique reads (or six multi-mapped reads) 
for canonical junctions, and seven unique reads (or ten multi-mapped reads) for non-canonical 
junctions in each of the samples. A cap of three samples have been chosen since it is likely for 
most experiments to have at least three replicates for a tissue type or condition. This highly 
stringent sifting procedure allows for selecting the most confident splice junctions supported by a 
sufficiently large number of perfectly mapped reads. FINDER compares read support across 



different samples of the same tissue type and/or condition. This is done with an attempt to 
preserve as much transcript diversity as possible.  
 
The splice junction database generated in the first pass is used as an argument to the second 
pass. In the second pass, the alignment is relaxed to allow a mismatch of two nucleotides and a 
soft clipping of up to 5% of the read length. The minimum overhang was set to 8 nucleotides for 
splice junctions supported by the database and kept at 12 for novel splice junctions. Well 
supported splice junctions expressed across multiple samples of the same tissue type and/or 
condition are selected. A third pass is conducted to allow alignments to annotated splice junctions 
with the number of maximum mismatches increased to three. This step allows the read support 
for junctions to elevate without creating any new spurious splice junctions. The minimum and the 
maximum intron sizes for the first three rounds are set at 20 and 10,000 respectively. Several 
genes in plant cereal genomes have introns longer than 10kb (Li et al. 2009). To capture read 
alignments to large introns, STAR is executed for the final time with the minimum and the 
maximum intron sizes set at 10k and 10 million respectively. Outputs from each pass are 
combined to form a single set of alignments. 
 
STAR focusses more on mapping reads faster but ignores those which arise from micro-exons. 
If STAR is allowed to map reads with large soft-clips (~50% of the length), then reads that arise 
from micro-exons will be mapped to it with soft-clips and cannot be used for assembling. Hence, 
we use OLego to map reads that are left unmapped by STAR. Unlike STAR, OLego focusses 
perfecting the alignments of short reads and takes more time to finish. Hence, FINDER only allows 
RNA-Seq samples having unmapped reads fewer than a million to be processed by OLego. 
 
FINDER uses a total of 4 rounds of STAR to align reads. The first two rounds of mapping are 
intentionally kept stringent to allow best alignments and select those splice junctions that are 
supported by a large number of reads. Before moving on to the 3rd round of iteration, FINDER 
checks the percentage of reads aligned by STAR in the first two rounds. If fewer than 20% of 
reads are aligned, then FINDER reruns STAR will default settings to allow for most reads to map. 
Finally, read alignments from all the steps are merged into one by Samtools (Hoff et al. 2016; 
Bruna et al. 2020). The entire process has been summarized in Figure 1.1. 
 
 

 
 

Figure 1.1 Alignment Flowchart: Step-by-Step protocol outlining the alignment process undertaken by FINDER. 

1.4 Assembling 
 
PsiCLASS is a meta-aligner that generates a single transcriptome assembly from multiple RNA-
Seq sources. It builds a global sub-exon graph by incorporating alignment information from 
all the samples, uses a mixture of gamma distributions to check if an exon is produced 
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due to noise and deploys dynamic programming optimization to build an exhaustive and 
accurate set of transcripts.  
 
On inspection of the output from PsiCLASS we noticed that the exon boundaries of several 
transcripts were truncated Figure 1.2. We consulted with the developers and modified PsiCLASS 
to extend the boundaries of the external exons to better accommodate the extent of RNA-Seq 
coverage (https://github.com/splicebox/PsiCLASS/issues/1). 
 

 
 

Figure 1.2 Gene models generated by PsiCLASS have truncated external exons 

 

1.5 Associating transcript models with conditions 
 
PsiCLASS generates a meta-assembly from all the provided RNA-Seq alignments and also 
generates individual assemblies from each aligned file. PsiCLASS is designed to ignore gene 
models that appear in a small subset of samples since they are assumed to be spurious. FINDER 
scans each individual assembly and selects those gene models that were discarded by 
PsiCLASS. This allows FINDER to recognize transcripts that were expressed uniquely in specific 
tissues and/or conditions. 
 
 

1.6 Utilities included with FINDER 
 
In addition to annotating genes in eukaryotes, finder offers 2 utilities that have a more 
generalized usage.  
 

1.6.1 verifyInputsToFINDER 
 
Users can check if the inputs provided are compatible with finder or not using this utility. This 
program will scan the SRAdb database to ensure that the samples provided are indeed an RNA-
Seq sample from the organism of choice. The program requires the path to the metadata file, the 
SRAmetadb file and the taxonomic id of the organism. It will report the samples that are not from 
an RNA-Seq sample or are from an incorrect taxon. We recommend users to perform a validation 
round using this utility to prevent the generation of incorrect annotations that can negatively 
impact downstream analysis. 

1.6.2 downloadAndDumpFastq 
 
The downloadAndDumpFastq utility can used to download data from NCBI-SRA. It is optimized 
to use as many CPUs as requested by user thereby utilizing time optimally. It will also convert the 
SRA files to fastq files and remove the SRA files once the data download is complete. The 
program is configured to rerun the steps to ensure all the requested files have been downloaded. 
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Chapter 2 

Chapter 2 Comparison with other 
gene annotation pipelines 

We compared the gene annotations produced by FINDER with those generated by MAKER2 
(Holt and Yandell 2011; Campbell et al. 2014), PASA (Haas et al. 2003) and BRAKER (Bruna et 
al. 2020; Hoff et al. 2016). This chapter outlines the series of commands used to generate gene 
annotations. We further provide more explanation about the analysis and results we reported in 
the main manuscript.  

2.1 Running BRAKER2 
 
BRAKER2 offers several different options to predict gene annotations. We provided a soft masked 
genome and the aligned short reads as input to BRAKER2 (Figure 2 in https://github.com/Gaius-
Augustus/BRAKER). We attempted to provide protein sequences as input to BRAKER2, but for 
most of the organisms the execution resulted in failure. Hence, we aligned protein sequences to 
the genome using exonerate (Slater and Birney 2005) and integrated it with the gene annotations 
produced from RNA-Seq short reads. BRAKER2 was not designed to utilize a large number of 
cores. So, FINDER was configured to use only 40 CPUs even when more resources were 
available. Also, BRAKER2 was unable to process genome fasta files when chromosome headers 
contained spaces. Genome fasta file headers were modified before providing them as inputs to 
BRAKER2. BRAKER2 is optimized to predict CDS but UTRs are added from RNA-Seq alignment 
files. We intended to compare RNA-seq evidence-based annotations only with prediction 
approaches. Hence, BRAKER2 predictions were generated without any UTRs. 
 
BRAKER2 was executed using the following command: 
 
braker.pl --genome <Path to organism genome> --cores <40 or less> --softmasking --overwrite --gff3 --bam 
<list of comma separated bamfiles> 

 
Alignment files were generated by FINDER according to the scheme outlined in the main 
manuscript.  

2.2 Assembling the transcriptome 
 
Both PASA and MAKER2 requires assembled transcripts. We converted the final gtf 
transcriptome assembly reported by PsiCLASS to fasta format using gffread (Korf 2004).  
 
gffread <gtf filename from PsiCLASS> -g <genome file name> -w <fasta filename> 

 
We intentionally provided transcriptome assemblies generated by PsiCLASS (Korf 2004; Song et 
al. 2019) to ensure fairness of comparison, since FINDER uses the same for annotation. 
PsiCLASS was executed with the --bamGroup option turned on so that it can preserve features 
that are unique to a particular tissue/condition. 

2.3 Running PASA 
 



To execute PASA two configuration files were generated using the following command: 
 
echo "## templated variables to be replaced exist as <__var_name__> 
 
# database settings 
DATABASE=/project/maizegdb/sagnik/FINDER1_manuscript/data/finder1_runs/Arabidopsis_thaliana/pasa_psiclass/
arath.sqlite 
 
####################################################### 
# Parameters to specify to specific scripts in pipeline 
# assign a value as done above. 
 
#script validate_alignments_in_db.dbi 
validate_alignments_in_db.dbi:--MIN_PERCENT_ALIGNED=<__MIN_PERCENT_ALIGNED__> 
validate_alignments_in_db.dbi:--MIN_AVG_PER_ID=<__MIN_AVG_PER_ID__> 
 
#script subcluster_builder.dbi 
subcluster_builder.dbi:-m=50" > alignAssembly.config.txt 
 
echo "## templated variables to be replaced exist as <__var_name__> 
 
# database settings 
DATABASE=/project/maizegdb/sagnik/FINDER1_manuscript/data/finder1_runs/Arabidopsis_thaliana/pasa_psiclass/
arath.sqlite 
 
####################################################### 
# Parameters to specify to specific scripts in pipeline  
# assign a value as done above. 
 
 
#script cDNA_annotation_comparer.dbi 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_OVERLAP=<__MIN_PERCENT_OVERLAP__> 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_PROT_CODING=<__MIN_PERCENT_PROT_CODING__> 
cDNA_annotation_comparer.dbi:--MIN_PERID_PROT_COMPARE=<__MIN_PERID_PROT_COMPARE__> 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_LENGTH_FL_COMPARE=<__MIN_PERCENT_LENGTH_FL_COMPARE__> 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_LENGTH_NONFL_COMPARE=<__MIN_PERCENT_LENGTH_NONFL_COMPARE__> 
cDNA_annotation_comparer.dbi:--MIN_FL_ORF_SIZE=<__MIN_FL_ORF_SIZE__> 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_ALIGN_LENGTH=<__MIN_PERCENT_ALIGN_LENGTH__> 
cDNA_annotation_comparer.dbi:--MIN_PERCENT_OVERLAP_GENE_REPLACE=<__MIN_PERCENT_OVERLAP_GENE_REPLACE__> 
cDNA_annotation_comparer.dbi:--
STOMP_HIGH_PERCENTAGE_OVERLAPPING_GENE=<__STOMP_HIGH_PERCENTAGE_OVERLAPPING_GENE__> 
cDNA_annotation_comparer.dbi:--TRUST_FL_STATUS=<__TRUST_FL_STATUS__> 
cDNA_annotation_comparer.dbi:--MAX_UTR_EXONS=<__MAX_UTR_EXONS__> 
cDNA_annotation_comparer.dbi:--GENETIC_CODE=<__GENETIC_CODE__>" > annotCompare.config.txt 
 
These configuration files were provided as input to the PASA pipeline. 
 
Launch_PASA_pipeline.pl -c alignAssembly.config.txt \ 
-C \ 
--ALT_SPLICE \ 
--ALIGNERS gmap,blat \ 
--CPU 15 \ 
-R \ 
-g <Path to genome file> \ 
-t <Path to transcriptome fasta file generated by PsiCLASS> \ 

2.4 Running MAKER2 
 
MAKER2 is a gene annotator pipeline that uses both gene predictors and evidence from RNA-
Seq experiments. We use SNAP (Stanke et al. 2008), AUGUSTUS (Tang et al. 2015) and 
GeneMark (Gremme et al. 2013) to generate predicted gene models. A total of three rounds of 
MAKER2 was executed. In each round, the genes predicted in the previous round was provided 
as input. A detailed step-by-step process has been provided below: 

2.4.1 Round1 MAKER2 
 
# Round1 MAKER2 Run 
maker -CTL # Generates configuration files 

 
The file maker_opts.ctl was updated with the following: 
 
genome=<Path to genome file> 
est=<Path to transcriptome fasta file generated by PsiCLASS> 



est2genome=1 
cpus=<Number of CPUs requested by user> 

 
Round1 of MAKER2 was launched with the following command: 
 
maker -base <organism_name> 
 
Annotations from all chromosomes were merged into one and then converted into gff3 using the 
following command: 
 
gff3_merge -d <organism_name>_master_datastoreindex.log 
 
maker2zff <organism_name>.all.gff3 
 
mv <organism_name>.all.gff3 round1.gff3 

 
Genometools (Venturini et al. 2018) was used to convert the gff3 file to gtf 
 
gt gff3_to_gtf -force -o round1.gtf <(cat <(cat round1.gff|head -n +1) <(cat round1.gff|awk '$2=="maker"')) 

 
In the next run, we adopted the method mentioned in the Supplementary document of Hoff 2016. 
 
#Round2 MAKER2 run 
cat round1.gtf | perl -ne ' 
    @t = split(/\t/); 
    $seen{$t[8]} += ($t[4] - $t[3] + 1); 
    if(eof()){ 
    $sum = 0; $c = 0; 
    foreach my $key ( keys %seen ){ 
    $c=$c+1; $sum += $seen{$key};} 
    print $sum."/".$c."=".($sum/$c); 
    print "\n"; 
    }' > temp 
 
flanking_region_length=temp/2 
gff2gbSmallDNA.pl round1.gtf <genome file name> $flanking_region_length first.gb 

 

2.4.2 Training with SNAP 
 
The following commands were executed to train SNAP 
 
fathom -categorize 1000 genome.ann genome.dna 
fathom -export 1000 -plus uni.ann uni.dna 
forge export.ann export.dna 
hmm-assembler.pl ${species} . > ${species}.hmm 

2.4.3 Training with AUGUSTUS 
 
new_species.pl --species=${species} 
etraining --species=${species} first.gb 1> etrain-test.out 2> etrain-test.err 
fgrep "gene" etrain-test.err | cut -f 2 -d` ` > bad.etraining-test.lst 
filterGenesOut_mRNAname.pl bad.etraining-test.lst first.gb > second.gb 
etraining --species=${species} second.gb 
optimize augustus.pl --species=$fspeciesg --onlytrain=second.gb.train.train second.gb.train.test 
 

2.4.4 Round2 MAKER2 
 
Configuration files for the second round of MAKER2 run was generated using the following 
command. 
 
maker -CTL # Generates configuration files 

 
The file maker_opts.ctl was updated with the following: 
 
genome=<Path to genome file> 
est=<Path to transcriptome fasta file generated by PsiCLASS> 
est2genome=1 



cpus=<Number of CPUs requested by user> 
maker_gff=round1.gff 
est_pass=1 
snaphmm=${species}.hmm # The hmm file generated after SNAP training 
augustus=${species} 

 
Round2 of MAKER2 was launched with the following command: 
 
maker -base <organism_name> 
 

2.4.5 Training with GeneMark 
 
GeneMark, another gene predictor, was used to generated predicted gene models using the 
following command: 
 
gmes_petap.pl --ES --cores $CPU --sequence <genome file> 

 

2.4.6 Round3 MAKER2 
 
For the final round, SNAP and AUGUSTUS was retrained using the steps outlined in the previous 
section. Configuration files for the third round of MAKER2 run was generated using the following 
command. 
 
maker -CTL # Generates configuration files 

 
The file maker_opts.ctl was updated with the following: 
 
genome=<Path to genome file> 
est=<Path to transcriptome fasta file generated by PsiCLASS> 
est2genome=1 
cpus=<Number of CPUs requested by user> 
maker_gff=round2.gff 
est_pass=1 
snaphmm=${species}.hmm # The hmm file generated after SNAP training 
augustus=${species} 
gmhmm=${species}/gmhmm.mod 
keep_preds=1 

 

2.4.7 MAKER2’s performance 
 
MAKER2’s performance was the poorest for almost all organisms even though it was executed 
with three gene predictors and assembled RNA-Seq transcripts for three rounds. MAKER2 was 
able to report only a tiny fraction of the ground truth transcripts. This impacted the sensitivity which 
reduced the overall F1 score for MAKER2. Also, MAKER2’s installation procedure was 
cumbersome and executing the program involved quite a bit of trial-and-error.  
 

2.5 Comparing FINDER gene models with other gene annotators 
 
We used the `compare` utility from `mikado` (Venturini et al. 2018) and compared the gene 
annotations to the reference annotations obtained from Ensemble under the assumption that the 
reference annotations were gold standard and did not contain any errors. Mikado not only 
generates a summary of the comparison, but also provides comparison metrics for each individual 
transcript.  

2.5.1 F1 Score comparison 
 
Mikado reports the number of transcripts in reference that is identified in the prediction and also 
the number of transcripts in the predicted annotation that have a perfect match with at least one 
reference transcripts. For multi-exonic transcripts, a perfect match is achieved when all the introns 
of the predicted transcript perfectly matches with the reference annotation. 2 mono-exonic 
transcripts form a perfect match only when at least 80% of the nucleotide definition agree with 



one another. Mikado compare also reports agreement of the reference with the prediction in terms 
of nucleotides, exons and introns. We have used transcript matches, since they best represent 
the quality of annotation. 
F1 score is computed as the harmonic mean between precision and recall. Recall is the fraction 
of reference transcripts that have a perfect match with at least one predicted transcript. Precision 
is the fraction of predicted transcripts that have a perfect match with at least one reference 
transcript. For an annotation to be good, both precision and recall should be high. While F1 score 
can indicate the number of transcripts correctly recognized, it does not offer any information about 
how the number of nucleotides in each reference transcript that was correctly annotated by the 
prediction. Hence, annotation edit distance has been used to determine how well each reference 
has been recognized. 

2.5.2 Annotation Edit Distance (AED) Score comparison 
 
Annotation edit distance (AED) (Bao et al. 2013; Lu et al. 2013; Huang et al. 2016) is calculated 
using the following formula: 
 

𝐴𝐸𝐷 = 1 −
2

( 1
𝑁_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑁_𝑟𝑒𝑐𝑎𝑙𝑙6

 

Where, 
N_precision = nucleotide level precision  
N_recall = nucleotide level recall 
 
Unlike F1-score, AED is reported for each reference transcript. A value of 0 indicates that the 
predicted transcript was a perfect match with the reference, while a score of 1 denotes that the 
reference was not reported. While constructing transcript from short read RNA-seq evidence it 
becomes quite a challenge to annotate the end exons correctly. This occurs due to low expression 
levels of some transcripts that may hinder the accurate reconstruction of the end points. 
Nonetheless, RNA-Seq data has sufficient information that could be leveraged to construct 
accurate untranslated regions (UTR). We selected those reference transcripts that had a perfect 
match in at least one of the reported gene annotations (BRAKER2, MAKER2, PASA or FINDER). 
AED scores were reported for only this set of transcripts. If a reference transcript, from this set, is 
not identified in a particular annotation then it is assigned a score of 1, specifically for that 
annotation. To further ensure that the AED scores were statistically lower for FINDER, we 
performed a Wilcoxon’s signed rank test. It is a non-parametric test that is widely used to assess 
whether the population mean ranks of two distributions differ significantly. In this case, we used 
the paired test, since each AED score corresponds to a particular reference transcript. All 
comparisons were made with FINDER reported transcripts. 
 

2.6 Processing long read sequencing data 
 
As a proof-of-concept, we used PacBio sequences to show that FINDER produces better gene 
annotation. We downloaded the consensus FASTA sequence from six PacBio Arabidopsis 
thaliana transcriptome samples hosted in Isodb (Pertea et al. 2015; Kovaka et al. 2019) and 
aligned them to the Arabidopsis thaliana genome, using GMAP (Wu and Watanabe 2005), to 
generate a gff3 file. All sequences deposited in Isodb are error corrected with short reads from 
Illumina. These PacBio sequences are full-length transcripts, containing both CDS and UTRs, 
that were captured from RNA-Seq expression studies.  
 
We performed the same analysis with Hordeum vulgare (Chapman et al. 2020; Hunt et al. 2019), 
since the r2 version of the gene annotation does not have any UTR annotation. We used RNA-
Seq data generated in the Wise lab as documented in (Hunt et al. 2019) RNA-Seq transcripts, 
collected from blumeria treated barley leaves, were sequenced using 16 SMRT cells with 
replicates and size fractionations. Data was processed using the standard SMRTLink software 
version 6. Full-length transcripts were error corrected using HECIL (Choudhury et al. 2018), 
CoLoRMap (Haghshenas et al. 2016) and Hercules (Firtina et al. 2018). 



Chapter 3 

Chapter 3 Assemblers and assembly 
mergers 

Improvements in technologies have resulted in a huge increase of sequencing experiments. This 
has necessitated the formulation of assembly softwares which are not only accurate but also very 
fast. Transcriptome assembly aided by alignments to the genome have shown to generate higher 
quality assemblies than de novo approaches (Liu and Dickerson 2017). There are several 
different genome-guided assemblers that are currently popular. Among them notable are Scallop 
(Shao and Kingsford 2017), Strawberry (Liu and Dickerson 2017), Stringtie (Pertea et al. 2015) 
and Trinity (Trapnell et al. 2012). We decided to skip Trinity since the genome guided approach 
defaults to the de novo approach and also it takes a very long time to complete.  

3.1 PsiCLASS assembler 
 
All transcriptome assembly softwares take a single RNA-Seq aligned bamfile as an input and 
generates a single gtf assembly. PsiCLASS (Song et al. 2019) is a novel assembler that allows 
user to provide multiple RNA-Seq alignments as input. It constructs a consensus assembly for all 
the samples and also individual assemblies for each of the samples. PsiCLASS was executed 
with the --bamGroup option turned on indicating it to preserve all tissue/condition specific features.  

3.2 Other assemblers  
 
To attest the supremacy of PsiCLASS over other assembly methods we compare it with Stringtie, 
Strawberry and Scallop. The arguments with which each assembler was executed has been 
provided below: 
 
stringtie <alignment_filename> -p $CPU -o <output GTF filename> 
scallop -i <alignment_filename> -o <output GTF filename> 
strawberry --allow-multimapped-hits -p $CPU -o <output directory> <alignment filename> 
 
StringTie is more sensitive to transcripts but also reports many false positives which reduces the 
overall transcript F1 score. Strawberry consistently predicts a large number of spurious transcripts 
for all the organisms, leading to a low specificity score. Scallop manages to attain average 
specificity and sensitivity. Both StringTie and Strawberry can be executed on multiple cores, but 
Scallop is designed for a single core machine. PsiCLASS achieves the best transcript F1 score 
by keeping the number of spurious transcripts at an absolute minimum thereby accomplishing the 
highest specificity score. At the same time, PsiCLASS also reports a sufficiently high fraction of 
the ground truth transcripts. Hence, FINDER uses only PsiCLASS to generate assemblies from 
short-read data. 

3.3 Merging assemblies together 
 
Each of the assemblers we tested were able to generate a single GTF annotation file for each 
RNA-Seq sample. Hence, we needed to use other softwares to combine the GTF annotations 
from multiple RNA-Seq samples. We used Stringtie-merge (Pertea et al. 2015), cuffmerge 
(Niknafs et al. 2017; Trapnell et al. 2010), TACO (Niknafs et al. 2017) and Mikado (Venturini et 



al. 2018) to generate the consensus assemblies. All the softwares except Mikado completed the 
executed in under 5 minutes. Mikado took more than 15 hours to complete its execution and even 
then, it returned an empty gff3 file. Hence, we decided to eliminate Mikado from our study. We 
executed all the three merging softwares on Arabidopsis thaliana. As illustrated in Table 3.1, 
StringTie-merge generates the best transcriptome assembly registering an F1 score of 35.11 
almost 10 units higher than cuffmerge. Hence, we used StringTie-merge for all the other 
organisms as well.  
 

 
Table 3.1 Comparison of performance of different softwares on combining multiple GTF annotations into a 

consensus annotation 

 
 
 
 
 

Base 
Specificity

Base 
Sensitivity

Base F1 
score

Exon 
Specificity

Exon 
Sensitivity

Exon F1 
score

Transcript 
Specificity

Transcript 
Sensitivity

Transcript 
F1 score

ST-merge 58.35 80.22 67.56 74.82 79.29 76.99 35.01 35.22 35.11
TACO 75.58 69.53 72.43 88.19 71.28 78.84 25.39 24.47 24.91

Cuffmerge 55.8 81.18 66.14 65.74 80.36 72.32 21.75 30.42 25.36
ST-merge 37.34 85.3 51.94 70.64 79.67 74.88 24.84 32.19 28.04
TACO 44.14 76.73 55.97 80.05 62.93 70.47 9.78 13.14 11.21

Cuffmerge 36.45 86.55 51.29 66.19 78.68 71.89 17.15 28.8 21.49
ST-merge 38.41 87.06 53.3 43.86 85.3 57.93 6.88 31.68 11.3
TACO 46.81 82.26 59.66 91.22 60.44 72.71 4.22 7.96 5.51

Cuffmerge 41.76 84.75 55.95 53.54 79.13 63.87 8.28 25.45 12.49
PsiCLASS 62.63 70.83 66.48 89.82 69.54 78.39 56.82 31.8 40.78

FINDER 74.46 71.45 72.92 91.79 69.93 79.38 60.04 37.21 45.95

Stringtie

Scallop

Strawberry
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